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Abstract

The NASCAP/GEO computer code, in use worldwide for simulation of spacecraft charging in geosynchronous orbit, is
in need of improvement. We discuss the use of the boundary element method (BEM) to allow more flexible geometric
specifications while providing more accurate surface electric fields, and the “Method of Patches” to provide more

accurate and robust time integration.

Introduction

The NASCAP/GEO (originally NASCAP) code, for three
dimensional dynamic simulation of spacecraft charging
in the geosynchronous environment, was developed be-
ginning in 1976, with only minor maintenance since about
1984. Since that time, computer processor speed has in-
creased by about a factor of 1000. The costs of computer
memory and disk storage have decreased by comparable
factors. And, there have been huge advances in software
design and mathematical algorithms. Accordingly, the
techniques used in NASCAP/GEO to enable cost-effec-
tive simulations on the computers of twenty years ago fail
to meet the demands and expectations of today’s users.

Furthermore, the “kludges” built into NASCAP/GEO to
allow calculations to proceed stably in the face of coarse
resolution in space and time often produce unsatisfactory
or confusing results. Figure 1 shows the results of a calcu-
lation that indicates some sudden change occurring at about
800 seconds. In fact, the sudden change was purely inter-
nal to the workings of the code, and had little relation to
physical reality. Commonly, the progress of charging in
time is governed by code internals rather than by physical
processes. We have seen sudden (in time) changes caused
by coarse spatial resolution as well.

NASCAP/GEO spends most of its time calculating elec-
trostatic potentials in the volume of space surrounding the
spacecraft using the Finite Element Method (FEM). How-
ever, what is important for charging is the electric field
strength at each surface element of the spacecraft. Calcu-
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lating the volume potential structure is a poor, as well as
inefficient, way to get surface electric fields, and this is
one source of the problems that “kludges” are in place to
overcome. We propose to use the Boundary Element
Method (BEM) [Brebbia, 1981] to obtain more accurate
surface electric fields, as well as to introduce more flex-
ibility into the spacecraft definition.

Time integration is NASCAP/GEOQ’s second problem. The
timescale for overall charging of a spacecraft is about four
orders of magnitude faster than the timescale for differen-
tial charging. (This wide separation of timescales is often
called “stiffness.”) NASCAP/GEO uses a first-order im-
plicit timestepping algorthm. However, the treatment is
plagued with roundoff problems, leading to ad hoc fixes,
and thence to poor representation of timescale. We pro-
pose to implement a variation of the “Method of Patches”
[Brydon et al.,1998], in which the time-scales are sepa-
rated and then solved exactly within less restrictive ap-
proximations than are currently used.

Calculating Potentials and Fields

The original design of NASCAP/GEO called for deter-
mining incident currents to a surface via the “reverse tra-
jectory” method. A candidate incident particle is tracked
outward from the spacecraft to determine whether it is
environmental in origin, and if so to determine its current
from the environment model. The Finite Element Method
(FEM) was used to calculate potentials in a large volume
of external space in order to compute particle trajecto-
ries. However, it soon became apparent that, due to large
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Figure 1. Example of a NASCAP/GEO calculation showing a “glitch” at 800 seconds, as well as generally poor

time representation.

sampling errors coupled with vast uncertainty in knowl-
edge of the environment, it was far better to use simple
collection models coupled to approximate analytic repre-
sentations of the environment. (The detailed potential cal-
culations have been used in several applications to deter-
mine whether particles incident to detectors are
environmental in origin, or originated elsewhere on the
spacecraft.)

On the other hand, emission of low energy electrons (pho-
toelectrons and secondary electrons) from surfaces plays
a crucial role in charging. For surfaces having a positive
(electron-attracting) electric field, these currents are cut
off, changing the sign of the surfaces’ net current. Effec-
tively, surfaces for which low energy electron emission is
the dominant current satisfy a boundary condition of small,
positive electric field.

In NASCAP/GEO, surface electric fields are calculated
by numerical differentiation of the space potentials. Not
only is this method inaccurate, but it provides little pre-
dictive connection between surface potentials and surface
fields. This is a major source of problems with NASCAP/
GEO calculations. This motivates a switch from the FEM
to the Boundary Element Method (BEM), which focuses
on the connection between surface potentials and fields.

In contrast to the FEM, which solves Poisson’s Equation,
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which leads to a non-sparse matrix connecting surface
potentials and charge densities (equivalent to electric
fields). Modern mathematical algorithms are available to
solve such a large, non-sparse matrix. Figure 2 [Mandell
et al., 1994] shows an example of a BEM calculation
(which we developed for another application) of surface
magnetic fields in a complex structure.

Advantages of the BEM include:

a) Surfaces are not constrained by gridding, either as to
orientation or size.

b) Surfaces need not be compatible, i.e., there is no re-
quirement that one edge be shared by exactly two
surfaces.

c) There is no need to zone up the external space.

d) The potential solution, on the surface or in space, is
naturally continuous.

e) Accuracy of electric fields is not limited by grid reso-
lution; no numerical differentiation is required.

Variations on the BEM equation provide additional meth-
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Figure 2. Example of a BEM calculation of surface magnetic fields of a complex structure.

ods for improving the robustness and stability of charging
calculations. For example, its gradient directly relates elec-
tric fields to surface charges, and its time derivative glo-
bally relates potential changes to currents.

Time Integration Algorithm

Calculating the development of spacecraft potentials in
time is made difficult by the wide disparity between the
time-scales for overall and differential charging. The ba-
sic equation of spacecraft charging is a multidimensional
form of the equation for charging a capacitor:

C dv/dt = (V)

It was immediately recognized that, due to the “stiffness”
of the equations, the “explicit” form

C(V(D-V(0)) =J(V(O)t
would be unstable (i.e., the solution would oscillate un-
less very short timesteps were used). Accordingly,
NASCAP/GEO uses the “implicit” form

C(V(D)-V(0)) =J(V(D))t

which requires the further approximation

J(V()) = J(V(0)) + 0J/0V (V(1)-V(0))
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(Estimating dJ/dV brings in still further complexity.) The
implicit solution is

V(1)-V(0) = J(VO)U(C — t dJ/AV)

which is stable as long as 0J/0V is negative.
The “method of patches” involves recognizing that the
equation

C dV/dt = J(V(0)) + 8J/dV (V-V(0))

has an exact solution
V — V(0) = -[J(V(0))/( 8J/dV)][1-exp(t (31/V)/C)]

which will give a better representation of the time-depen-
dence of charging.

Figures 3 and 4 show calculations for charging of a single
insulating surface on a grounded spacecraft using fairly
long timesteps. The first figure shows the simpler case of
charging in eclipse and the second the much more diffi-
cult case of discharging in sunlight. In both cases the ex-
plicit method gives clearly unphysical results. The implicit
method works well in these cases, but underestimates the
charging rate. The “method of patches” is a clear, albeit
modest, improvement.

To apply the “method of patches” to a multiple-surface
problem requires writing the charging equation in matrix
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Figure 3. Results of the three time integration methods
for charging a spacecraft insulating surface in
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Figure 5. Charging of a 2-surface spacecraft with moder-
ate timesteps.

form and diagonalizing it. We start with the basic charg-
ing equation .
CV =1(V)

where C is the capacitance matrix, and }" and / are vec-
tors. Linearizing gives

CV =A+BV

If only plasma currents are considered, B may be approxi-
mated as diagonal. However, conductivity processes lead
to off-diagonal elements in B. To simultaneously diago-
nalize B and C we (1) apply a unitary transformation M;
to diagonalize B to By ; (2) apply a diagonal transforma-
tion Mj, to transform B to the unit matrix; and (3) apply a
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Figure 4. Results of the three time integration methods
for discharging a spacecraft insulating surface

in sunlight.
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Figure 6. Charging of a 2-surface spacecraft with very
long timesteps.

final unitary matrix, M3, to diagonalize the already trans-
formed capacitance matrix, C. This gives

C3V3 =M M, ,M,A +V,

where  C, =M M,M,CM{M,M]

Vi =M MM,V

Figures 5 and 6 show the application of the above method
to a typical two surface spacecraft charging problem. In
this problem, the eigenvalues of C; are 764.5 and 0.048,
quantifying the “stiffness” of the problem. Figure 5 uses
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timesteps that, although quite long, are adequate to re-
solve the charging time-scale. Figure 6 uses timesteps far
too long toresolve the short time behavior, but nonethe-
less correctly integrates over the fast processes and cor-
rectly reproduces the slow processes.

Conclusions

We have discussed two methods for improving the calcu-
lation of spacecraft charging by NASCAP/GEO. Using
the Boundary Element Method for surface potentials and
electric fields will provide more accurate values for sur-
face electric fields, while relaxing constraints on object
definition. Using the “Method of Patches” for time inte-
gration will provide a more time-faithful and robust rep-
resentation of dynamic charging.

These two methods are not independent of each other. For
example, the external portion of the capacitance matrix
needed for time-dependent charging is exactly the matrix
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generated by the BEM. The BEM can also be used to gen-
erate the relation of the time progress of electric field at
one surface to the currents to other surfaces. The long-
range goal would be to combine these two methods into a
fully implicit method for advancing currents, potentials,
and fields in a single process at each timestep.
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