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Abstract 

We for the first time applied electromagnetic PIC (Particle-In-Cell) computer simulations 
to analyze the antenna characteristics in magnetized plasma. In a three-dimensional 
simulation space, we placed a dipole antenna which is a conducting current line in a 
magnetized plasma. By providing a Gaussian pulse as an input power to the center of the 
antenna and observing the current induced at the power feeding point, we obtain the input 
impedance of the antenna as a function of frequency.  We particularly examined the electron 
kinetic effects on the antenna impedance such as electron temperature and electron evacuated 
region (ion sheath) formed around the antenna. It is confirmed that the most obvious 
resonance point is the local Upper Hybrid Resonance frequency. As the electron temperature 
increases, the resonance frequency also increases in accordance with the modification of 
dispersion relation for the UHR branch. We also examined the antenna impedance variation 
by changing the size of the electron evacuated region or ion sheath created around the 
antenna. We could confirm that the antenna resonance near the local UHR frequency is sharp 
for the small sheath while the profiles of the impedance approach to those of vacuum case as 
the sheath becomes large. The resonance frequency also decreases because the plasma 
density also decreases in the vicinity of the antenna. 
 

Introduction 
 

Antenna characteristics in plasma have been investigated by many scientists (e. g. 
Balmain, 1964, Adachi et al., 1977, Sawaya et al., 1976). However, the analysis of the 
antenna characteristics such input impedance is very complex because plasma is dispersive 
and anisotropic medium. In the previous theories with an assumption of cold plasma, 
approximations in the current distribution along the antenna or the sheath structure around 
the antenna were hired. Antenna analysis with warm plasma approximation was also done for 
some limited models (e.g. Kuehl, 1966).  Meanwhile, recent progress of computer facilities 
enables us to analyze the antenna properties in vacuum with the FDTD (Finite Difference 
Time Domain) method which solves the Maxwell equations with spatial and temporal grid 
points. By using the FDTD method with a dielectric tensor obtained under the cold plasma 
approximation, we can basically analyze the antenna impedance in plasmas. However, in 
order to include the plasma kinetic effects in the antenna impedance such as electron 
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temperature and sheath around the antenna, we need to treat the plasma as particles in the 
simulations. To treat the plasma dynamics, we apply the PIC (Particle-In-Cell) method to the 
conventional FDTD field solving simulations. In the PIC method, we solve the equation of 
motion for each particle with the field components obtained at grid points with the FDTD 
method. To obtain the plasma density and current at each grid point, we use the area sharing 
method.  In the present paper, we will report preliminary results of the antenna impedance 
obtained in the PIC simulations. We particularly focus on the dependence of antenna 
resonance on the electron temperature and sheath size around the antenna. 

Simulation Model 
 

In the current simulation studies, we use a three-dimensional full electromagnetic particle 
code called KEMPO (Matsumoto and Omura, 1985). In KEMPO, we solve Maxwell's 
equations and equations of motion of electrons and ions. To advance the electromagnetic 
field with Maxwell’s equations in the simulation space, we adopted the FDTD (Finite-
Difference Time-Domain) method. Plasma dynamics and the associated plasma current are 
solved  by adopting the PIC (Particle-In-Cell) method (Birdsall and Langdon, 1985).  

 
Three-dimensional simulation model is shown in Figure 1. In the simulation space with 

64× 64× 64 grid points a number of electrons is uniformly distributed. In the center, a dipole 
antenna with the length of 32 grid points is set. We assume that the antenna is a pure 
conductor, which implies that the electric field inside the antenna is assumed to be zero. To 
feed the power to the antenna, we adopted the delta gap feeding method. At one grid point 
located in the middle of the antenna, we provide voltage as a function of time. To obtain the 
wide-band characteristics of frequency with one simulation run, we utilize a Gaussian-type 
pulse for the voltage at the feed point. The induced current is obtained with the rotational 
field around the feed point. The antenna impedance is calculated as the ratio of the voltage to 
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Figure 1.  Simulation model 



the current. By taking its Fourier transformation, we obtain the antenna impedance in 
frequency domain.  
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Figure 2.  Antenna impedance with different plasma 
temperature. 
 

Dependence of Antenna 
Impedance on Plasma 

Temperature 
 

Figure 2 shows the antenna 
impedance obtained in the 
simulations with different plasma 
temperature. The upper and lower 
panels indicate the real and 
imaginary parts of the impedance, 
respectively. The dashed lines 
correspond to the impedance for the 
vacuum case. As clearly shown, 
there is a large change of impedance 
at the Upper-Hybrid Resonance 
frequency UHRω . The real part of the 
impedance takes large values at 
peaks in comparison with the 
vacuum case, which implies that the 
minimum power is radiated in 
plasma from the antenna at UHRω . 
The interesting feature we should 
mention is that the peaks found in the 
real part of the impedance shift 
toward higher frequency as the 
plasma temperature increases. This 
tendency is not observed when no 
external magnetic field is included 
in the simulation model. Therefore, 
we speculate that specific plasma 
wave mode is closely related to the 
shift of the impedance resonance.  

 
Figure 3 shows the dispersion 

curves of the slow-X mode with 
different temperature. At the 
wavenumber corresponding to the 
wave length which resonates with 
the present antenna, we can find the 
resonance frequency for each wave 
branch. As easily found, the 
resonance frequency on the slow-X 
mode also increases as the plasma 
temperature becomes high.  This 
can explain the shift of the 
resonance frequency as shown in Figure 2. 
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Figure 3.  Slow-x mode with different temperature and 
the corresponding resonance frequencies. 



Sheath Effect on the Antenna Impedance 
 

Figure 4 shows the dependence of the antenna impedance at frequency around UHRω  on 
the sheath size created around the antenna. The right panels depict the profiles of the sheath 
around the antenna. By changing the simulation parameters, we varied the size of the region 
where electrons are evacuated around the antenna. We regard the electron evacuated region 
as sheath. At each case, we examined the antenna impedance as shown in the left panels. It is 
obviously shown that the resonance at UHRω  is sharp for the small sheath while the profiles of 
the impedance approach to those of vacuum case as the sheath becomes large. It is because 
the vacuum region around the antenna expands for the larger sheath.  The resonance 
frequency also decreases because the plasma density also decreases in the vicinity of the 
antenna. It is theoretically examined that the impedance will be affected by the sheath 
resonance, which we could not confirm in the present simulations. It is also reported that 
sheath waves which propagate along the antenna surface may affect the antenna impedance. 
Currently we have been working on the properties of the sheath waves. We will examine the 
effect of the sheath waves on the antenna impedance with the larger scale of simulation 
model, which is left as a future work. 
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Figure 4.   Sheath profiles (right panels) and corresponding antenna impedance (left panels). 
 



Conclusions 

We for the first time applied three-dimensional electromagnetic PIC computer 
simulations to study the antenna impedance characteristics. We particularly focused on the 
electron kinetic effects on the antenna impedance such as electron temperature and electron 
evacuated region (ion sheath) formed around the antenna. We confirmed that a dipole 
antenna immersed in magnetized plasma has a resonance at the local Upper Hybrid 
Resonance frequency. As the electron temperature increases, the resonance frequency also 
increases in accordance with the modification of dispersion relation of the UHR branch. We 
also examined the antenna impedance variation by changing the size of sheath where 
electrons are evacuated around the antenna. We could confirm that the resonance at UHRω  is 
sharp for the small sheath while the profiles of the impedance approach to those of vacuum 
case as the sheath becomes large. The resonance frequency also decreases because the plasma 
density also decreases in the vicinity of the antenna. Although the simulations performed in 
the current study are preliminary and the simulation results are rather conventional, it should 
be noted that antenna analysis by performing electromagnetic PIC simulations basically 
works and we will be able to apply this method to examine the antenna characteristics in 
various plasma situations such as the existence of photo-electrons, which is left as a future 
work.  
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