

SPIS Status

22nd SPINE meeting, Toulouse, March 23-24 2016

J.-C. Matéo-Vélez, P. Sarrailh, S. Hess ⁽¹⁾ J. Forest, B. Jeanty-Ruard, A. Trouche ⁽²⁾

What is SPIS ?

- Spacecraft Plasma Interaction Software includes physics
 - 3D and dynamical modelling of the surrounding plasma sheath
 - Particles and current collections
 - Surface effects and secondary emissions
 - Internal electrical balance
 - Active sources
- SPIS architecture is
 - Based on a numerical kernel, SPIS-NUM, an electrostatic 3D unstructured electrostatic Particle-In-Cell plasma model
 - Fully developed on a Java-based highly modular Object Oriented library
 - Include a complete Integrated Modelling Environment (IME), SPIS-UI:
 - Pre-processing (CAD, meshing, IBCs settings, simulation settings...)
 - Simulation control and monitoring
 - Data-mining and post-processing
- SPIS software is open-source project

SPIS quick overview

RTENUM, PARIS

Science & Groupware

THE FRENCH AEROSPACE LAB

3

Historical context

• SPIS

- Initiated in 2001 by ESA, with support of CNES
- About 10 major releases since 2003
- More than 8 500 downloads (all versions/branches included)
- More than 1 300 downloads for SPIS 5.1.8
- Open to various fields: ESD, instrument calibration, propulsion, dusty plasmas, internal charging.
- Various flavours
 - SPIS-GEO
 - SPIS-Science
 - AISEPS
 - SPIS-Dust (To be released)
 - SPIS-IC (To be released)
- Components mutualised with other scientific communities

SPINE, an active community

- http://dev.spis.org
- More than 900 registered members (and around 2 new registrations a week)
- About 20 active contributors (including SMEs, major industrial actors and academics)
- Regular SPINE meetings
- Many publications (~10 at next SCTC !!)

What SPIS is good at

- SC charging in GEO
 - From ESTEC/ESA contract finished in 2013 (D. Rodgers) and from initial contracts (ESA, A. Hilgers / CNES, D. Payan)
 - Simplified use for industry → SPIS 5 version
 - 10+ publications in scientific journals : comparison with NASCAP, LANL spacecraft data, electron emitter assessment, ...
- Scientific missions dealing with low energy plasma measurements
 - From ESTEC/ESA contract finished in 2014 (A. Hilgers)
 - Lots of scientific tools \rightarrow SPIS 5.1.8 version (last available)
 - 5+ publications in scientific journals: LEO Cubesat charging, Solar orbiter, Juice, ...
- Ground plasma tank
 - Detailed characteristics of plasma chambers and particles sources (ion and electron guns) and instruments (LP, RPA, KP)
 - 5+ publications in scientific journals: electrodynamic tether, secondary electron emission yield, surface potential ...

What SPIS can be quite good at

- Plasma thrusters interaction with spacecraft (charging, efficiency, erosion, contamination)
 - From ESTEC contract finished in 2012 (E. Gengembre) lead by Airbus DS
 - Database of thrusters available on demand at ESA
 - Updated model for electron cooling, Charge exchange reaction
 - Included in SPIS 5 but miss important physics however → one objective of this meeting is to tell what
 - A few papers in scientific journals
- Thin elements
 - SPIS includes models for thin wires and thin panels (electric field and particle collection)
 - Assume long Debye length regime to obtain analytical fits
- 22nd SPNE meeting
- Quick overview of capabilities is now difficult to do \rightarrow look at the html user guide

6

Coming soon

- SPIS 5.2
 - From ESTEC contract on Dusty plasma (F. Cipriani)
 - Of course, totally different physics is included : dust grain charging, surface contamination, lunar environments
 - Improved solvers : robust particle pusher, stabilized circuit solver (even though still improvable)
 - New UI capabilities
 - Experimental validation by PhD student A. Champlain started in 2013
 - 2 publications in scientific journals

For users that are not interested by dusts:

The new capabilities do not complicate the use of SPIS

if you do not need it, you probably will not even see it

The efficiency of SPIS for non-dusty simulations is not impacted

memory usage is smaller and execution speed increased by ~10%

THE FRENCH AEROSPACE LAB

SPIS 5.2 should be available by June this year after consolidation and non regression procedure
ONERA

Parallel development

- SPIS Internal Charging
 - From 2 ESTEC contracts (G. Santin, D. Rodgers)
 - Change of paradigm : 3D charge transfer inside matter; enables computing days of charge and relaxation; mixed with SPIS Surface charging but one have to choose to perform either intern or surf charging (not both at the same time)
 - 2 communications in congress (1 at next SCTC)

On-going work at ONERA

- PhD thesis are on-going on the development of SPIS under CNES or Midi-Pyrénées Region grants: advanced numerical schemes allowing to solve more complex problems in realistic times
 - Patch method (A. Brunet started 2014):
 - Advanced multi-domain method allowing to refine the mesh on particular locations ("patch").
 - Small-scale systems simulation: SC interconnectors, sensors
 - Large-scale simulations: thruster plume, wake. . .
 - Hybrid method (O. Jorba-Ferro started 2015):
 - Coupled fluid and perturbative-PIC method allowing the simulation of dense plasma flows
 - First targets are the MYRIADE spacecraft (TARANIS)
 - Models of material conductivity (R. Pacaud started 2015):
 - Material conductivity physical and numerical modelling
 - · Validation with experiments on space material
 - Impact of electron emission inside plasma thrusters (M. Villemant started 2015)
 - Experimental investigations in new DEESSE chamber
 - 1D modelling of plasma thruster channel

Good start for

- Electric propulsion
 - From 2 ESTEC contracts (K. Dannenmayer, A. Hilgers)
 - Challenging projects long awaited by all the European space industry
 - Release candidate expected end of 2017
 - You are all invited to
 - → See presentations by P. Sarrailh and S. Hess
 - Participate to the discussion tomorrow on "Development of a SPIS version dedicated to plume-spacecraft interaction"
- SPIS-Services commercial offer by ARTENUM and ONERA
 - Since 2014
 - Training (GEO, LEO, EP)
 - One-year user assistance
 - New modules (as eg geometry editors)

