Simulation needs for fields instruments

Anders.Eriksson@irfu.se

Swedish Institute of Space Physics, Uppsala SPINE XVII, Jan 17-19, 2010

Why this talk?

- Introductory overview of area: background for speakers
- Point to issues/projects not covered by speakers
- Bring up other codes: what do they offer that SPIS does not?
- Requirements on SPIS upgrade: set the scene for upcoming presentations and discussions
- This is in much <u>my view</u> (with some input from others)
 - To be improved by your presentations and the discussions at this meeting

Why this workshop?

- Obviously there are simulation needs among instrumenters
- Important to get community input on what these needs are before setting user requirements on SPIS upgrade

SPINE XIV, ESTEC 2008 SPIS simulations in support of plasma instruments forCosmic Vision

A. Hilgers (ESA)	A review of spacecraft plasma interactions effects on plasma measurements
A. Masson (ESA)	Electron density measurements in the magnetotail with different instruments
M. Capacci (Laben)	Observation of SMART-1 plume plasma environment with the EPDP plasma diagnostic package and future activities
M. Capacci (Laben)	Charging active control: PLEGPAY experiment onboard ISS results; activities on future systems
D. Rodgers (ESA)	Plasma measurements onboard CHAMP spacecraft
H. Laakso (ESA)	Observation of spacecraft plasma interactions with Cluster
D. Kataria (MSSL)	Spacecraft-plasma interactions: an MSSL perspective
A. Eriksson (IRFU)	Cold plasma and electric field measurements in the Jovian system: possibilities and challenges
A. Hilgers (ESA)	Modelling of plasma environment of Cluster electrostatic sensors
A. Eriksson (IRFU)	Wakes in cold tenous plasmas: nuisance and blessing
S. Clucas (ESA)	MMS electrostatic environment simulation
D. Rodgers (ESA)	Champ and Swarm plasma environment modelling

Contents

- Fields instruments
 - Types
 - Issues
 - Design issues
 - Data interpretation
- Missions
- Codes
 - Use of SPIS
 - Other codes

Fields instruments

- Instruments for measuring continuous fields
- Traditional/practical grouping:
 - DC B-field (limit $\approx 100 \text{ Hz}$)
 - DC E-field (limit ≈100 Hz)
 - Langmuir probes (plasma density & temperature)
 - AC B-field (limit ≈100 Hz)
 - AC E-field (limit ≈100 Hz)
 - Radio/radar (≈MHz)
 - Active instruments: sounders, impedance probes

S/c-plasma issues for simulation (1/2)

- DC B-field measurements
 - Usually quite insensitive to s/c-plasma issues
 - In dense magnetized plasmas, the polarization current on wake edge can give a DC B signal (Swarm)
- DC E-field measurements & Langmuir probes
 - Relies on electric coupling to plasma, sensitive to s/cplasma issues
 - Asymmetric antenna or s/c configuration
 - Photoelectron clouds and currents
 - Wake potential, asymmetric shielding
 - Presentations by e.g. Cully, Marchand, Wahlund, Nilsson, Morooka, Hånberg, Capacci, Brunner

S/c-plasma issues for simulation (2/2)

- AC E- and B-field instruments
 - Antenna diagrams
 - Wave scattering on s/c surfaces and plasma inhomogeneities
 - Waves and noise generated by wake, Mach cone etc
 - Presentations tomorrow by e.g. Maksimovic and Krasnoselskikh

Missions and needs

- Some missions needing instrument simulations:
 - In space: Rosetta, Cassini, Cluster, THEMIS
 - Upcoming: Swarm, BepiColombo, MMS
 - Design phase: JGO/JEO, Solar Orbiter, SP+
- In most cases, wide ranges of plasma parameters are encountered
 - Example: Debye lengths for Rosetta vary from a fraction of a mm (fully developed inner coma) to tens of meters (tenuous solar wind & magnetosphere at Earth swingby)
 - No single simulation setup can cover all this with just a change of parameter values
- Some include thin (mm) and long (tens of m) wire booms challenging to model
 - Cluster, THEMIS, MMS, BepiColombo MMO

Rosetta

- In space, ops at target comet from 2014
- Presentations by Schläppi and Hånberg
- S/c-plasma interaction simulated by Roussell and Berthelier (2004) and by Sjögren et al (2009, 2010)
- S/c plasma issues for density, E-field and s/c potential measurements:
 - Wake and photoelectron cloud in solar wind/early comet phase
 - Wake formation in dense plasma at fully developed comet
 - Contamination/inhibition of probe current

Rosetta Langmuir probe instrument

- In tenuous plasmas, much of s/c potential remains at boom position
- Need simulations to see how measured potential relates to real s/c potential

Rosetta: Wake and photoelectrons

- Wake and cloud of photoelectrons build up potentials of the scale we wish to measure
- SPIS simulations quite adequate for impact on Vsc measurements
- Sjögren (2009, 2010)
- Modelling by Hånberg (tomorrow)
- Present SPIS cannot simulate Langmuir probe operations (c.f. Cassini)

Cassini

- In space, at Saturn since 2004
- Presentations by Wahlund, Lewis, Morooka and Nilsson
- S/c-plasma interaction simulated by Nilsson (SPIS,2009) and Olson (2010, other code)
- Issues for density and s/c potential measurements:
 - Photoemission in tenuous plasmas (Saturn msph – within current SPIS capacity)
 - LP current collection influence from s/c-plasma issues (current SPIS not sufficient)

Cluster, THEMIS, MMS, Bepi MMO

- Missions with long wire boom electric fields
- SPIS has some capability to model these, but dedicated codes (see Cully presentation) with different philosophy can be more useful
 - When plasma densities increase, SPIS PIC capacities would be useful
- SPIS simulations by Prakash (2007)
- Problem:
 - Large scale size disparity (mm to hundreds of m)
 - Enormous number of particle needed in strict PIC approach
 - Backtracking, also of photoelectrons, could much improve SPIS in this respect

(a): Ion density in XY plane (Grid points in m)

(b): Ion density in XZ plane (Grid points in m)

Prakash SPIS sim of Cluster wire booms in a plasma flow

Cully Daedalus simulation of Cluster photoemission and its impact

Swarm

- Ionospheric mission with Langmuir probe and thermal ion instrument
- Simulated by:
 - Rodgers (s/c potential, SPIS)
 - Marchand (ion measurement, own code, includes B)
 - Chiaretta (LP, SPIS, presented at SPINE XVI)
- Chiaretta LP SPIS simulation
 - Simulated influence on LP from adjacent elements
 - Could not simulate s/c influence on LP in current SPIS
 - Would be able to if SPIS version used included backtracking to given surface (probe) for improving statistics
 - Similar problem for Cassini (Nilsson presentation tomorrow), Rosetta, JGO etc
- Magnetic field effects should be modelled!

JGO

- Jupiter Ganymede Orbiter
- Presentations by Wielders and Wahlund tomorrow
- Initial instrument simulations by Cully
- S/c-plasma issues quite similar to Cassini and Rosetta
- Added influence of highenergy impact (radiation secondaries etc)

Solar Orbiter Solar Probe+

- Missions to the near-solar environment
- Presentations by Maksimovic and Krasnoselskikh tomorrow
- Environment with high Te and high density
- For DC Langmuir probes/Efields, current SPIS should be sufficient
- AC perturbations may need better tools (Krasnoselskikh, Maksimovic)

Ergun Solar Probe+ simulation

Other simulation tools used

- PicUp3D (SPIS predecessor, homogeneous Cartesian grid)
- Presentations by:
 - Richard Marchand (code including B)
 - Chris Cully (boundary element code with backtracking)
 - Stefano Markidis (independent PIC code)
- Many PIC codes can be adopted to do at least parts of what SPIS does. Recent examples:
 - Olson et al (Phys. Plasmas 17, 102904, 2010) used two PIC codes (2D and 3D) by W. J. Miloch (crude Cassini model, no photoemission)
 - Ergun et al (Phys. Plasmas 17, 072903, 2010) used an own code for investigating the s/c potential of Solar Probe+ in the near-sun environment
- High-frequency codes operating in the frequency domain
 - Beghin et al (Radio Sci., 40, RS6008, 2005) simulated the response of the Cluster electric antennas in space above ≈1 kHz
 - Several simulations and lab investigations by e.g. the Graz group
 - Frequency domain simulations considered to be outside the scope of SPIS

Input from Jean-Jacques Berthelier

- 1- Including magnetic field and testing the results first in the case of a simple Langmuir probe with a plasma at rest. There are a few papers in the litterature such as those of Laframboise (JGR 1993 I believe), Singh (also in JGR but I do not remember the exact year, probably 1994 or 1995) and certainly a few from San Martin which I do not know about. Comparing the SPIS results with published results in a "simple" case is mandatory to be sure of what SPIS is doing. In particular the extent of the sheath along and perpendicular to B would be very important. In a second step it should be important to check the variation of the wake, if any, depending on the magnetic field direction and intensity.
- 2- Increasing the size of the simulation box to several tens of meters (minimum 40 m) for a satellite like DEMETER, i.e. with dimensions less than 1 mx1mx1m and for Debye length ~ 10cm (max 20 cm). Most important is the length on the rear side of S/C of at least 30 m. Transverse dimensions may be ~ 8-10m. I understand this is very demanding for memory but we have observed a new phenomenon on DEMETER that is related to wake effects at long distance from S/C and to be quantitative a model with a long simulation box is needed.
- Wish you a happy and successfull New Year and a good meeting, JJ

When is present SPIS insufficient? (1/2)

- Simulating a small instrument on a big s/c
 - Issue: current to instrument noisy because few PIC particles hit it unless the total macroparticle number is impractically large
 - Can be fixed by allowing backtracking from given elements, in this case an electrostatic probe, also of photoelectrons
 - Assumes SPIS solution for potential is good even though the macroparticle number in small tetrahedra around a finely resolved instrument, which often is a good approximation

When is present SPIS insufficient? (2/2)

- Magnetic field effects can be very important, and need a SPIS-like tool in complex geometries
 - Integration time for particle trajectories increases
 - Combination with backtracking could allow a relatively low macroparticle number at least in some cases
- Importance of outgassing and subsequent ionization?
 - Can be important for recently launched s/c in tenuous plasmas: see presentation by Schläppi tomorrow
- High-energy particle impact?
 - Particularly for JGO. Is this important or not?
- Dusty plasmas and dust grain impacts?

This workshop

- Looking forward to getting your inputs
- Your chance to influence SPIS development
- Make your thoughts very clear to us
- Suggestion: end your presentation by stating what you what like SPIS to do, or how it should be modified