INSTRUMENT SIMULATIONS IN TENUOUS PLASMAS: WHAT TO LEARN FOR SPIS

Chris Cully IRF-Uppsala

BACKGROUND

•2005, developing the MMS radial boom concept

•Needed more quantitative tools

- NASCAP: restricted to Americans
- SPIS: not quite what we needed
- Developed own code

•Has been useful for us

• Can we refine SPIS to replace this code?

OUTLINE

• What we usually want to model
• Our solution [Cully et al, JGR, 2007]
• Example applications

• Advantages + disadvantages vs. SPIS

• How to include this functionality in SPIS?

MODELLING REQUIREMENTS

1. Potential field near the spacecraft

MODELLING REQUIREMENTS

- 1. Potential field near the spacecraft
- 2. Stray currents to the probe

MODELLING REQUIREMENTS

- 1. Potential field near the spacecraft
- 2. Stray currents to the probe
- 3. Probe-plasma interaction: current-voltage (I-V) curve

MODELLING CHALLENGES

- Few useful symmetries: fully 3D
- Thin wires are difficult to model
 - Smallest scale size is $\sim 10^{-6}$ box size
- Need to include photoelectrons
- Need to accurately compute currents
- Boundary conditions are specified at infinity

MODELLING SIMPLIFICATIONS

• Background plasma can often be assumed tenuous

- Debye length > system size
- Ambient plasma has little efffect on potentials

• Usually interested in the time-stationary solution

OUR SOLUTION

SOLVERS: OVERVIEW

• Laplace solver: Boundary Element Method

- Grid-free integral method
- Circumvents scale separation problems
- Often all that we use

• Poisson solver:

- Spacecraft: Boundary Element Method
- Plasma: Fast Multipole Method

• Particle push: adaptive (4th order Runge-Kutta)

• Iterative self-consistent solver

• Laplace
$$\rightarrow$$
 Vlasov \rightarrow Poisson -

BOUNDARY ELEMENT METHOD

- Problem: gridding the space is prohibitively expensive
 - Solution: Don't grid the space

• Boundary Element Method:

- Divide the boundary (i.e. the spacecraft) into panels of (unknown) constant charge density
- Solve for charge density on the boundary (inverse integral eq.)
- Once all the charges are known, the potential is uniquely determined

 $\Phi = \frac{1}{4\pi\varepsilon_0} \sum_{\text{oloments}} \iint \frac{\sigma(x', y')}{r} dx' dy'$

FASI MULTIPULE METHUD (FMM)

- Basic idea: use multipole expansion to compute longrange forces
 - Trade precision for speed
- 2 "flavours":
 - n*log(n) hardo Relatively simple
 - n hard
 - "True" FMM
 - Faster in theory, but requires many spherical harmonic manipulations
- Greengard + Rokhlin 1987

Use multipole expansion on larger region

MULTIGRID REPRESENTATION

- Resolution can be different in different areas of the domain.
- Allows the storage of grids that would otherwise be prohibitively large
 Fits easily with FMM

CALCULATING CURRENTS

- Particles are traced back in time starting at the surface at which the current is to be calculated
 - Current found using Liouville's theorem

EXAMPLE APPLICATIONS

vs. SPIS: Some advantages, Some disadvantages

CLUSTER

- Self-consistent density and potential
- Boom "pulls" the spacecraft potential well with it
 - No 1/R falloff

vs. SPIS: Better treatment of wire booms (in 2006...) But, photoelectron cloud difficult and time-consuming to simulate.

CLUSTER (CONT.)

- Probe IV curve reproduced
- Electric field reduction ("boom shortening")

•
$$E_{obs} = 0.87 E$$

 ${\circ}$ Predicted relation between V_{sc} and V_{probe}

•
$$V_{\text{probe}} = 0.19 V_{\text{sc}} + 0.7 V$$

- Mixed success in predicting sunward offset effects
 - At least partially due to puckprobe stray currents

vs. SPIS: Backtracking particles allows efficient computation of currents

MMS

- Evaluated different axial and radial boom designs
- Evaluated various placements of radial booms

MMS

- Evaluated potential perturbations due to ASPOC ion emitter
 - Effect on electric field and EDI beams

vs. SPIS: Quick and easy. PIC is really more appropriate.

IDEAS FOR INCORPORATING THIS INTO SPIS

COMPARISON TO SPIS

• Designed for a different sort of problem

• Specialized for thin booms, tenuous plasmas

• Disadvantages

- Limited background plasma
 Can't handle: wakes, dense plasmas, ...
- No ability to handle time-varying problems
- o3 Perceived advantages
 - Particle backtracking for currents
 - Fast, easy-to-use Laplace solver
 - Good support for thin wires

PARTICLE BACKTRACKING

• Essential for finding currents

- Otherwise, need to wait for sufficient number of particles to strike the probe
- Don't need full time dependence
 - Could trace through instantaneous field at t=t₀
- User interface is difficult to design
 - My GUI design failed; script-driven from IDL
- Need ability to label surfaces
 - Calculate currents
- Built-in weighting by exponential, Gaussian would be useful

GRID-FREE LAPLACE SOLVER

- Grid-free vacuum simulations have been surprisingly useful for us
 - Fast and accurate
 - Easy to change geometry
- Probably difficult to incorporate into SPIS
 Although, source code (and developer) available

THIN WIRES

- Thin wire booms are important for some problems (e.g. BepiColombo)
- SPIS already has support for thin wires
 - Should perhaps cross-validate

CONCLUSIONS

• **Backtracking particles** would be very useful in SPIS

- Need to think carefully about the interface
- Grid-free Laplace solver has proven valuable
 - Probably difficult to incorporate, but source code and expertise is available
- Modelling thin wires is important for electric field instruments
 - Should consider cross-validation

TYPICAL DOUBLE PROBE ELECTRIC FIELD INSTRUMENT

- Spinning satellite
- Measure potential differences between pairs of probe spheres
- 4 Radial probes on flexible wires
 - 50m-100m tip to tip
 - Held out centrifugally
- 2 Axial probes on rigid booms
 - 5m-25m tip to tip

ELECTROSTATIC CONTROLS

- Desire: isolate the probe sphere as much as possible from the spacecraft
 - Minimize perturbation in potential
 - Minimize stray currents

