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BACKGROUND

�2005, developing the MMS radial boom 
concept

�Needed more quantitative tools
� NASCAP: restricted to Americans

� SPIS: not quite what we needed

�Developed own code
�Has been useful for us

�Can we refine SPIS to replace this code?



OUTLINE

�What we usually want to model
�Our solution [Cully et al, JGR, 2007]
�Example applications

� Advantages + disadvantages vs. SPIS

�How to include this functionality in SPIS?
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MODELLING REQUIREMENTS

1. Potential field near the spacecraft
2. Stray currents to the probe
3. Probe-plasma interaction: current-

voltage (I-V) curve



MODELLING CHALLENGES

� Few useful symmetries: fully 3D
� Thin wires are difficult to model

� Smallest scale size is ~10-6 box size

� Need to include photoelectrons
� Need to accurately compute currents
� Boundary conditions are specified at 

infinity



MODELLING SIMPLIFICATIONS

�Background plasma can often be assumed 
tenuous
� Debye length > system size

� Ambient plasma has little efffect on potentials

�Usually interested in the time-stationary 
solution



OUR SOLUTION



SOLVERS: OVERVIEW

� Laplace solver: Boundary Element Method
� Grid-free integral method

� Circumvents scale separation problems

� Often all that we use

� Poisson solver:
� Spacecraft: Boundary Element Method

� Plasma: Fast Multipole Method

� Particle push: adaptive (4th order Runge-Kutta)

� Iterative self-consistent solver
� Laplace � Vlasov � Poisson



BOUNDARY ELEMENT METHOD

� Problem: gridding the space is 
prohibitively expensive
� Solution: Don’t grid the space

� Boundary Element Method:
� Divide the boundary (i.e. the 

spacecraft) into panels of (unknown) 
constant charge density

� Solve for charge density on the 
boundary (inverse integral eq.)

� Once all the charges are known, the 
potential is uniquely determined
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FAST MULTIPOLE METHOD 
(FMM)

� Basic idea: use multipole 
expansion to compute long-
range forces
� Trade precision for speed

� 2 “flavours”:
� n*log(n) hard

� Relatively simple

� n hard
� “True” FMM
� Faster in theory, but requires 

many spherical harmonic 
manipulations

� Greengard + Rokhlin 1987

calculate interaction
exactly

Use multipole expansion
on larger region



MULTIGRID REPRESENTATION

�Resolution can be 
different in different 
areas of the domain.
� Allows the storage of 

grids that would 
otherwise be 
prohibitively large

�Fits easily with FMM



CALCULATING CURRENTS

�Particles are traced back in time starting at 
the surface at which the current is to be 
calculated
� Current found using Liouville’s theorem



EXAMPLE APPLICATIONS

vs. SPIS:
Some advantages,
Some disadvantages



CLUSTER

� Self-consistent density 
and potential

� Boom “pulls” the 
spacecraft potential well 
with it
� No 1/R falloff

vs. SPIS:
Better treatment of wire booms
(in 2006...)
But, photoelectron cloud difficult
and time-consuming to simulate.



CLUSTER (CONT.)

� Probe IV curve reproduced

� Electric field reduction (“boom 
shortening”)

� Eobs= 0.87 E

� Predicted relation between Vsc

and Vprobe 

� Vprobe = 0.19Vsc+0.7V

� Mixed success in predicting 
sunward offset effects
� At least partially due to puck-

probe stray currents

vs. SPIS:
Backtracking particles allows efficient
computation of currents



MMS

�Evaluated different axial and radial 
boom designs

�Evaluated various placements of radial 
booms

vs. SPIS:
Grid-free representation makes
some geometries easier to model



MMS

�Evaluated potential 
perturbations due to 
ASPOC ion emitter
� Effect on electric 

field and EDI beams

vs. SPIS:
Quick and easy.
PIC is really more appropriate.



ROSETTA

Simulated 

variations in

measured spacecraft

potential as the

solar panels rotate
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vs. SPIS:
Don’t need to remesh; less noise.
But, photoelectron cloud difficult and
time-consuming to simulate.



IDEAS FOR INCORPORATING 
THIS INTO SPIS



COMPARISON TO SPIS

�Designed for a different sort of problem
� Specialized for thin booms, tenuous plasmas

�Disadvantages
� Limited background plasma

�Can’t handle: wakes, dense plasmas, ...

� No ability to handle time-varying problems

�3 Perceived advantages
� Particle backtracking for currents 

� Fast, easy-to-use Laplace solver

� Good support for thin wires



PARTICLE BACKTRACKING

�Essential for finding currents
� Otherwise, need to wait for sufficient number of 

particles to strike the probe

�Don’t need full time dependence
� Could trace through instantaneous field at t=t0

�User interface is difficult to design
� My GUI design failed; script-driven from IDL

�Need ability to label surfaces
� Calculate currents

�Built-in weighting by exponential, Gaussian 
would be useful



GRID-FREE LAPLACE SOLVER

�Grid-free vacuum simulations have been 
surprisingly useful for us
� Fast and accurate

� Easy to change geometry

�Probably difficult to incorporate into SPIS
�Although, source code (and developer) 

available



THIN WIRES

�Thin wire booms are important for some 
problems (e.g. BepiColombo)

�SPIS already has support for thin wires
� Should perhaps cross-validate



CONCLUSIONS

�Backtracking particles would be very useful 
in SPIS
� Need to think carefully about the interface

�Grid-free Laplace solver has proven valuable
� Probably difficult to incorporate, but source code 

and expertise is available

�Modelling thin wires is important for electric 
field instruments
� Should consider cross-validation



EXTRA SLIDES



TYPICAL DOUBLE PROBE ELECTRIC 
FIELD INSTRUMENT

� Spinning satellite
� Measure potential 

differences between pairs 
of probe spheres

� 4 Radial probes on flexible 
wires
� 50m-100m tip to tip
� Held out centrifugally

� 2 Axial probes on rigid 
booms
� 5m-25m tip to tip 

Axial 
probe

Radial 
probe

Spin 
axis

THEMIS

(roughly to scale)



ELECTROSTATIC CONTROLS

At spacecraft
potential

Controlled
(guard)

Controlled
(puck)

� Desire: isolate the probe sphere as much as possible from the 
spacecraft
� Minimize perturbation in potential
� Minimize stray currents


