

Focus on SPIS limitations for cosmic vision missions

SPINE Workshop, January 17-19, 2011

ONERA : ARTENUM : P. Sarrailh, J.-C. Matéo-Vélez, J.-F. Roussel J. Forest, B. Thiébault, J. Turbet

retour sur innovation

Outline

- Introduction
- Focus on the main limitations of SPIS 4.3 (including Demeter simulation with SPIS)
- Performances

Objectives

- Focus on limitations to achieve SPIS simulation concerning:
 - scientific missions (future missions from cosmic vision and past missions)
 - low energy plasma measurements
- Limitations related to:
 - User interface (SPIS-UI) and Numerical solvers (SPIS-NUM)
 - Concerning: inputs, outputs, solvers, thirdparts, the software in general
- Initial list coming from:
 - Initial user requirement list for cosmic vision mission from ESA:
 - List with the SPINE Agenda
 - From the SPINE meeting presentation in 2008
 - Past experience from ONERA/Artenum/IRF/IRAT on SPIS running simulation:
 - Demeter case for example
 - · Simulations in other context

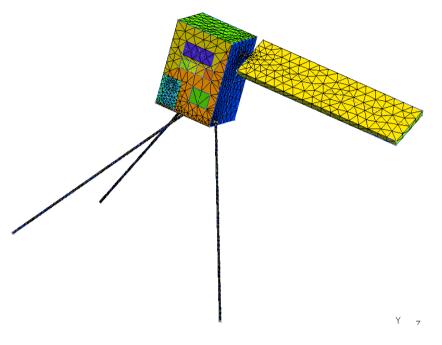
Initial user requirements list

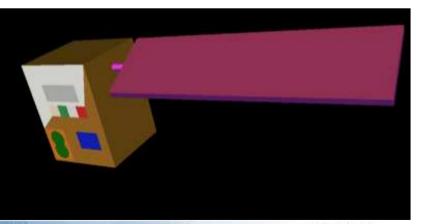
- wire boom interaction with plasma (including secondary emission and particle collection);
- solar arrays plasma interaction (including interconnectors current collections);
- energy spectrum of secondary particles (including photo-electron);
- input energy spectrum from the sun in UV-X range;
- detailed characteristics of particle beams emitted by active devices such as ion emitters (when relevant);
- · low potential variation due to radar systems;
- · exposed high voltage systems;
- magnetic field effect on charged particle collection and emission;
- wake effects;
- shading;
- magnetically induced electric field;
- · detailed characteristics of ground based testing environment;
- · detailed characteristics of ambient charged particle environment;
- · deep dielectric charging effect on surface potential;
- · transient effects due to dust impacts;
- rotating spacecraft;
- pitch angle dependency of ambient particles;
- partially transparent grids, e.g., as part of sensors;
- non inter-acting detectors;
- photo-ionisations of neutrals;
- neutral interaction with surfaces (reflection, adsorption and evaporation)..

Software requirement

- The list of effects shall be updated and converted into software requirements taking into account:
 - The accuracy requirement for the physical parameters used as input or output of the simulation shall be defined.
 - The performance of the software
- Initial list of software requirements:
 - varying number of particles according to local mesh size and/or density
 - as high as possible length and time scale ratio
 - expand material property parameters such as the ones describing secondary particle yield curves
 - efficient memory utilization
 - fast run speed

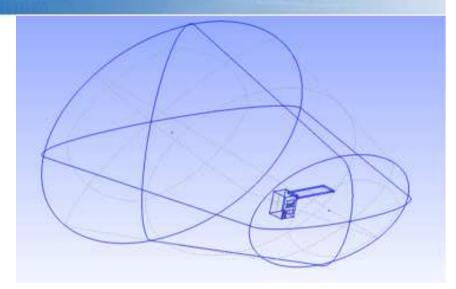
ONERA

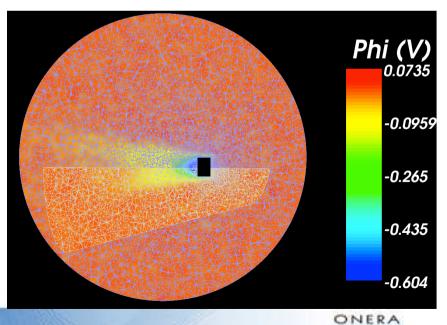

Plasma model


- Full PIC method:
 - Memory consuming: number of cells depends on the Debye length
 - High CPU time cost due to:
 - Large number of particles
 - Necessity to resolve the plasma frequency
- Best to use other possibility:
 - Hybrid model (Maxwell-Boltzmann relation for electrons) not valid for positive SC potential or barrier potential > Te
 - Multi-zone (robustness to be verified yet)
- Solutions:
 - Prevent additional cost (software implementation and optimization of simulation parameters)
 - Multi-threading the SPIS-NUM (CPU time gain only)
 - Massive parallelization

Feedbacks from Demeter modelling

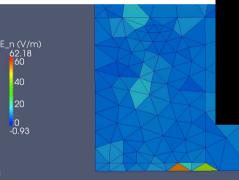
- Study currently done by Artenum under a CETP/LATMOS funding/effort
- Detailed modelling of the Demeter mission, characterised by:
 - Most detailed geometry as possible
 - Detailed modelling of vicinity of scientific instruments (IAAP) and probes
 - Detailed modelling of the wake structure
 - Observation of very thin effects (e.g. variation of potential lower than Te)
- Severe physical and numerical constraints
 - $T_e=0.2eV, T_i=0.09eV, v_i=7500m/s, n_e=10^{10} m^{-3}$
 - Very low Debye length / SC-size ratio
 - Meso-sonic regime, with a wake structure
 - Need of large computational domain w.r.t. the characteristic sizes and long relaxation times
 - Positive S/C and/or domains leading to the necessity to use full PIC models.

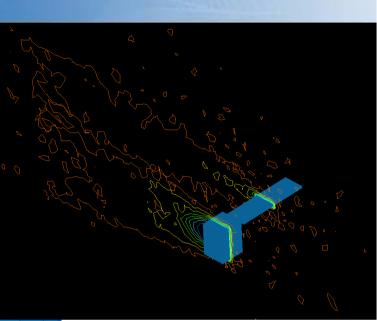


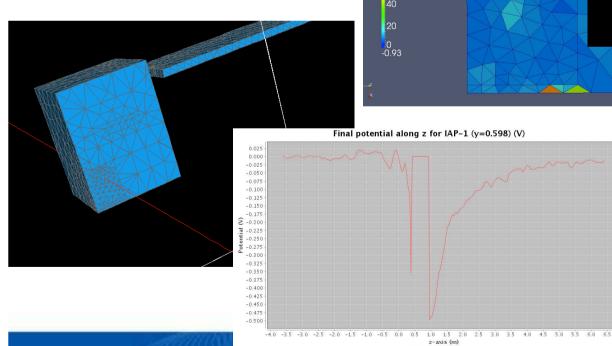


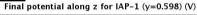
ONERA

Numerical challenge: pushing back the SPIS limits

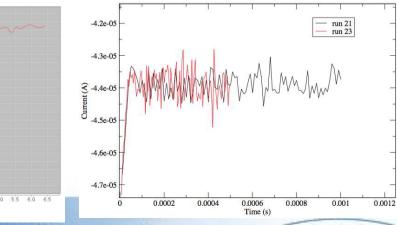

- Large grids
 - In hybrid mode
 - Ext. bound radius: 6m
 - Local resolution: ext. bound 0.3m; S/C surface 0.1m; IAP instrument up-to 0.015m
 - Up-to 7e5 cells
 - In full PIC mode
 - Tronconic shape for a better adaptation to the wake structure
 - Very strong limitation on the global size of the computational domain
- S/C at various potentials
 - Negative: hybrid mode
 - Positive: full PIC
- Study of the impact of the external boundary shape/extension
 - Several shapes of external bound, with crosscomparison





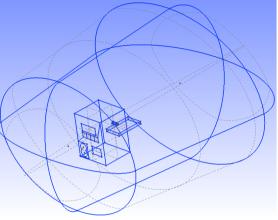

But already detailed and useful results

- Possibility to model complex and realistic structure, including
- Realistic and detailed wake structure on a large extension
- Detailed information close to IAP
- Reasonable noise level



z-axis (m)

- Probed data



Total net collected current all nodes

the Income of Address of Lat.

Difficulties, limitation and trouble-shootings

- Large mesh and particles based models naturally very costly in memory, but:
 - Some memory leaks (NUM level):
 - Especially in full PIC models;
 - Impact especially in long simulation runs
 - Partially fixed on the last releases of SPIS.
 - Some memory leaks (UI level):
 - At the data-extraction phase (conversion DF form NUM to UI);
 - At the data saving phase;
 - At the data export/conversion phase (VTK and ASCII).
 - Memory over cost, due to the implementation of current JVMs (e.g. SUN or OpenJDK), leading to strong limits especially in PIC
 - Partially solved by the use of optimised JVM like Oracle JRockit one
 - Limit the grid size to about 1e6 cells
 - Limit number of particles (about 6part/cell for the previous grid)
 - · Limit the size of the modelled system
- Strong limits in the persistence scheme (too many data to save, difficult to reload)
- Settings need expertise in function of the studied physic and used models
 - Selection of models
 - Number of particles and ratio ni/ne taking into account the presence of the wake
 - S/C-size/computational domain size ratio

Limits of the Demeter example

- Physics limited to LEO plasma conditions:
 - Debye length very small w.r.p. to the S/C size and the computational domain size
 - Meso-sonic conditions impact the settings of the PIC model
 - Very critical and extreme case
 - Severe demand on the outputs quality and signal/noise level
- "Limits of the software" are also linked to the "limits of the user's expertise"
 - First runs only, probably with non-optimized settings:
 - Numerical times not applied here yet;
 - Multi-models not used yet for positive areas;
 - Probably too much outputs impacting the whole memory foot print and computational time
 - Need to "select" the outputs in a simpler and finer way
 - Bette knowledge of the limits and application conditions of each numerical model may deeply impact on the effective limits of the software
 - Cross-analysis by parametric studies may be very useful but may be costly in terms of CPU time.
- More advanced tests on larger computers needed for a finer evaluation of limits

Meshing and transport

- Meshing with GMSH (thirdpart tool):
 - Factor of 10⁵ in SPIS4.3 between smallest and largest mesh size
 - 2D meshing good
 - 3D meshing not so good, necessitates imbricate boxes for smooth refinement everywhere
- Solutions:
 - Mesh inspector
 - Perhaps better 3D meshing with Netgen
- Particle trajectory calculation:
 - In case of uniform E (and no B)
 - Exact trajectory integration in each tetrahedron
 - In case of non-uniform E (wire elements for example) or with a magnetic field B:
 - Runge-Kutta Cash-Karp adaptive method (4th and 5th order to determine and control the error)
 - Costly in CPU times
 - Possible amelioration for uniform E with B using a quasi-exact method:
 - Integrate exact trajectory in each cell
 - Iterative model to calculate the interception of trajectory with the tetrahedron surfaces (by dichotomy-like method)

Detectors and probe

- Actually, nothing specific in SPIS
- Small detectors (interaction or not with the plasma)
 - The statistics on current collected:
 - · Limited with forward tracking
 - · Backtracking restricted to ambient populations
 - Solution ? Test particle approach (back/forward tracking on pre-computed potential map)
 - Concerning the outputs:
 - No export of distribution function
 - · No trajectory plot from collection to emission site
- Semi-transparent grid are not possible
- Collection and emission by a thin elements:
 - Thin wires = only electric field modelling by now (no collection nor emission)
 - Thin panels = SPIS UI mesh splitting TBDone

Boundary conditions

- Distribution functions
 - Only Maxwellian injected
 - Need for Kappa distribution ?
 - no pitch angle dependency (anisotropy)
- Injection of particles
 - nothing specific in case of simulation box boundary inside the sheath
 - Wake simulation (needs sufficiently big boxes)

Particle in volume

- Control of the number of super particles (noise/accuracy)
 - Today
 - calculated on the external boundary limit
 - no guarantee anywhere else
 - Better if possible to control globally the number of super particles
- Photo-ionization
 - No model for that in SPIS
- Neutral modeling
 - Today: neutral exists in SPIS:
 - Emission from sputtering and sources or ambient
 - Transport and weight deposit in cells
 - Impinging flux
 - Display OK: flux on surfaces, and densities, mean velocity and temperature in volume
 - Need for something else ?

Surface interactions

- Shadowing
 - Self shadowing to be developed in the frame of SPIS-GEO
 - Only source point sun (unique incidence angle)
- Secondary electron under electron impact
 - True
 - Only Maxwellian injection, user defined yield (material parameters)
 - No other model for the dist. function as e.g. as a function of impacting particle energy
 - Backscattered
 - depending on impinging distribution
 - Control of the super particle number is difficult
- Secondary electron under photon
 - Only Maxwellian injection, user defined yield (material parameters)
- Sources
 - Limited to implemented distributions (see SPIS documentation)
 - Only constant over time

Simulation control

- Change of simulation parameters (discrete/continuous)
 - Today, "Scenario" can be implemented in SPIS-NUM
 - Scenario are discrete variation of simulation data with time
 - Two scenario exists in SPIS:
 - Potential sweep scenarios (SPIS 4.3)
 - ESD risk scenario (only in the "ESD Prediction Tool" version of SPIS)
 - But not exist:
 - Spinning S/C
 - Environment change, sources
 - Material properties change
 - etc...
- Convergence
 - Convergence on what parameter ?
 - SC potential, SC current, total energy, total particle number to be developed in SPIS-GEO

ONERA

• But is it relevant for scientific simulation ?

Other requirements ...

Small sub-systems

- Today: possible local mesh refinement (using imbricate box)
- If a lot of them (e.g. solar arrays interconnects): not possible
- V cross B
 - No model by now in SPIS
- Effect of micro-meteoroid
 - nothing specific
 - what for ?
 - possible: plasma generated by a time-limited source

ONERA

For fine simulations, we have to pay the price

- SPIS-NUM models are highly optimized but for detailed simulations we have to pay the price.
 - Physics leads to large and refined meshes, costly in memory
 - Fine physics needs higher statistic (nb. particles), costly in CPU-time
- Stop to use old-fashion pocket calculators!
- Present study done on very modest computer (Artenum's "super computer" Belzebuth):
 - Quad AMD Opteron 2Ghz, 22Gb RAM
 - Bought 270€ on... E-Bay...
- For comparison, at the Terratech workshop
 - Fluid mechanics (Code ASTER): mesh about 3e8 cells on EDF supercomputer (92 Tflops).
 - Solid mechanics (Code Saturn): about 5e8 cells
 - Japanese S/C-charging code (MUSCAT) initially designed to be run on the Earth Simulator (40 Tflops, means 12 000 times Artenum's Belzebuth!)

