

Overall SPIS current projects

SPINE Workshop, January 17-19, 2011

ONERA : ARTENUM : J.-C. Matéo-Vélez, P. Sarrailh, J.-F. Roussel J. Forest, B. Thiébault, J. Turbet

retour sur innovation

Outline

- Overview of other current SPIS activities and possible interaction with SPIS-SCI
 - SPIS GEO
 - SPIS Deep charging
 - SPIS Electric propulsion
 - Bare Tethers
- Timeline

- "Simplified Standard MEO/GEO Tools for Spacecraft Charging"
- ESA funded activity
 - ESA Technical Officer: D. Rodgers
- An open consortium involving industrial actors and users
 - Artenum (FR, prime), ONERA (FR), ASTRIUM (FR), SSC (SW)
- Objectives
 - Provide a version of SPIS adapted to engineering applications
 - Simplified User Interface (wizard-based approach and predefined models)
 - Support of new file formats used in the industry (STEP and GDML)
 - Physical models adapted to MEO/GEO orbits and commercial space platforms
 - · Tested software against in-flight observations and existing codes
 - Keep the compatibility of SPIS-GEO with the standard SPIS version
 - A new user interface will be plugged into the existing SPIS-NUM library: SPIS-GEO will be a different "execution mode" of the same software
 - SPIS-GEO projects will be compatible with the standard version of SPIS
 - All changes will be reversed to the standard version of SPIS

- Scope
 - Improvements based on the existing SPIS software
 - Adaptation to industrial needs and MEO/GEO orbits constraints
 - Implementation of the highest-priority identified requirements (from ESA, industry, agencies)
 - Excludes: software parallelisation and development of new solvers

Better identification of industrial and final users needs

Opening of the industrial dynamics to new actors

Reinforcement of the community life

- Work to be carried out
 - Requirements identification and prioritization
 - SOW and SPINE community
 - Industrial needs
 - Cross analysis of the needs w.r.t. constraints of the numerical models and the selected technologies
 - Implementation of the highest priority requirements
 - Software design and implementation
 - New simplified user interfaces
 - Adaptation of the models
 - Test and validation
 - Setup of a continuous integration process
 - Definition of two test spacecraft geometries (SCATHA & E3000)
 - Identification of the validation tests
 - Validation against NASCAP/GEO and SPIS 4.0 simulations
 - · Validation against in-flight measurements when available

UR categories

Software execution General requirements Project loading and saving Spacecraft definition Environment and solver configuration Simulation control and monitoring Robustness, performance and accuracy Post-processing Documentation and help

- Interactions with SPIS-SCI project
 - SPIS-UI: simplified user interface will be developed in SPIS-GEO. SPIS-SCI should also benefit from that.
 - SPIS-NUM
 - no interaction
 - not the same environment to be modeled and charge levels to be simulated
 - however : consolidated validation of SPIS models

SPIS Deep Charging

- "Energetic electron shielding, charging and radiation effects and margins"
- ESA funded activity
 - ESA technical officer: Giovanni Santin
- An open consortium involving industrial actors and users
 - TAS-E (SP) (Prime)
 - G4AI (Geant4 Associates International Ltd, UK)
 - TRAD (Tests and Radiations, FR)
 - DH Consultancy (BE)
 - ARTENUM (FR)
 - ONERA (FR)
 - TAS-F(F)
 - INTA (SP)

SPIS Deep Charging

- Objectives
 - Improve electron shielding, charging and radiation effects and margins methods
 - To provide spacecraft designer with
 - updated and improved INDUSTRIAL tools capabilities
 - supporting the radiation analysis needed to cover GEO/MEO (electron environment mission) mission requirements

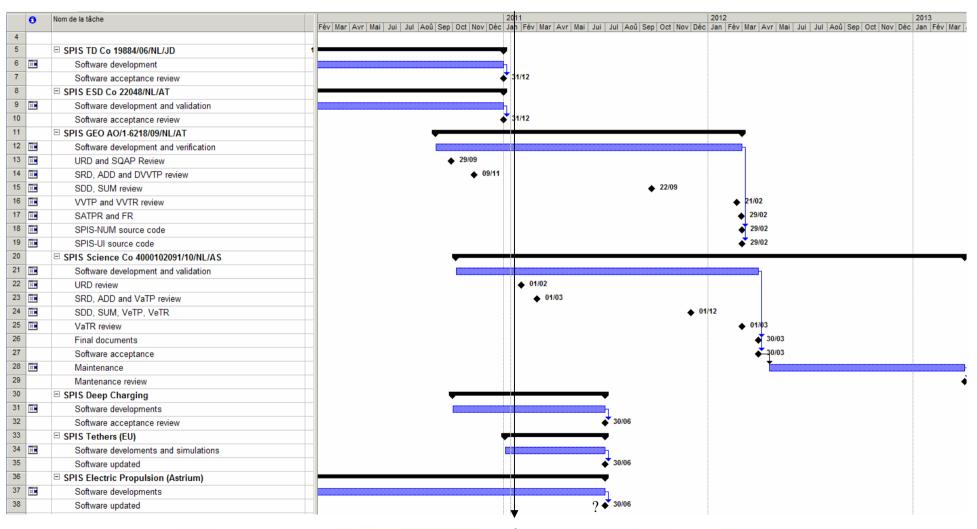
SPIS Deep Charging

- ONERA
 - Physical modelling of the internal charging
- ARTENUM
 - In interaction with ONERA and the other partners, to perform the interfacing between the SPIS-UI framework and the radiation related tools (Fastrad, Spenvis, Gras).
- No identified impact on SPIS-SCI project
 - not at all the same physics simulated (high energetic particle shielding)

SPIS Electric Propulsion

- ESA funded activity
 - ESA technical officer: E. Gengembre
- Astrium (FR) lead
- Main objective : Develop new models of electric propulsion thrusters in SPIS
- No identified impact on SPIS-SCIENCE activity

Bare tethers


• 7th Framework Program "FP7" from European Union

Consortium

- Universidad Politecnica de Madrid (coordinator)
- Universita di Padova
- ONERA Colorado
- State University
- Emxys
- DLR
- TECNALIA INAS
- Main objectives concerning SPIS
 - Simulation of plasma collection by thin wires
 - Validation with respect to experiments
- Identified impact on SPIS-SCIENCE activity
 - Extension and consolidated validation of thin wires SPIS models

ONERA

Timeline of current SPIS projects

today

ONERA

- More and more people involved in the SPINE community life (including new developers from "non-historical" entities !)
- Major SPIS improvements in 2011-2012

