

Cluste	er parameters
Parameter	Value
Electron and ion temperature	100 eV
Photo-electron temperature	1.5 eV
Photo-electron current density	30 µА m ⁻²
Plasma number density	1.0 cm ⁻³
Debye length	74 m
Spacecraft potential	0.0 to 7.0 V
Spacecraft radius	1.41 m

Conclusion The turning point formulation has been used for simulating photo-electron sheath in a large Debye length regime. Predictions of potential barrier is consistent with the observations made on Geotail spacecraft by Zhao et al. for what regards the magnitude of the barrier. There is a discrepancy, however, for what regards the barrier location. Examination of Zhao et al.'s hypotheses leads to conclude that our predictions are more realistic.

SPINE, 13-14 Nov. 2008, ESTEC

Simulation of the Cluster Spacecraft Floating Probe Potential

Benoit Thiébault and Alain Hilgers

Space Environments and Effects Section (ESA-ESTEC/TEC-EES),

Keplerlaan 1, 2200 AG Noordwijk, The Netherlands

Arnaud Masson, Philippe Escoubet and Harri Laakso

Space Science Department (ESA-ESTEC), Keplerlaan 1, 2200 AG Noordwijk, The Netherlands SPINE, 13-14 Nov. 2008, ESTEC

Cluster	del menere etem
Cluster mo	odel parameters
Plasma temperature:	0.1 to 3 eV
Plasma density:	0.1 to 1000 part/cm ³
Cylindrical spacecraft radius	1.45 m
Cylindrical spacecraft height	1.3 m
Equivalent spherical spacecraft radius	1.41 m
Spherical probe radius	0.04 m
Probe bias current	140 nA
Photoelectron saturation current density	56 µA/m ²
Number of probes with bias current	4

Fit of data with bi-Maxwellian (Thiebault et al., IEEE TPS, 2006)

Ambient temperature (eV)	Toph (eV)	Joph (µA/m)	T1ph (eV)	J1ph(µ A/m ²)	Total saturation current ($\mu A/m^2$)
0.5	1.3	40.0	8.0	6.5	46.5
0.8	1.3	45.0	8.0	5.5	51.5
0.9	1.3	48.0	8.0	5.3	53.3
1.0	1.3	55.0	8.0	5.0	60.0
2.0	1.3	65.0	8.0	4.0	69.0
3.0	1.3	75.0	8.0	3.5	78.5
	SPIN	NE, 13-14 No	ov. 2008, E	STEC	

Conclusion

- Current limitations include:
- Models are validated in stationnary regime
- Uncertainty of the order of a few percents in current collected on a sphere.
- Certainly worse on a wire.
- Resolve both wire scale and spacecraft sheath scale.

SPINE, 13-14 Nov. 2008, ESTEC

