ONERA

Ja

THE FRENCH AEROSPACE LAB

return on innovation

www.onera.fr

Ground plasma tank modelling with SPIS

Jean-Charles Matéo-Vélez Jean-François Roussel Léon Lévy

THE FRENCH AEROSPACE LAB

return on innovation

Scientific context

Ionosphere simulation tank JONAS

Experiments achieved in 2002 (CNES study) SPIS development 2002-2007 \rightarrow numerical simulations

Objectives

- Characterization of the tank
 experiments
 numerical simulations → SPIS
- Understanding the physics inside, for every study

Experimental studies

- Plasma I-V characteristics using Langmuir probes (4) plasma density electron temperature plasma potential
- Wake effect using a plate

Fast ions (10-25 eV) emitted from the source can not reach the region behind the plate,
Slow ions created by charge exchange reactions (CEX) are present in the whole tank ≠ LEO

Experimental studies- Langmuir probes interpretation

Experimental studies

• Preliminary study:

- \rightarrow considering <u>only</u> the fast ions
- \rightarrow using a spherical probe
- \rightarrow model of ion source for simulations with SPIS

ONERA

Numerical simulations (SPIS Model)

CAD model and mesh using Gmsh

Numerical simulations (SPIS Model)

9

Numerical simulations (SPIS)

- Numerical results
 - Fast ion density : 10¹¹-10¹⁴ m⁻³
 - Realistic decrease of ion density (~ 1/r² for fast ions)
 - Wake effect clearly demonstrated for fast ions
 - Important amount of slow ions > 10¹² m⁻³, which is in agreement with measurements

Numerical simulations (SPIS)

x = 230 mm

Comparison with experiments: preliminary results

Fast ion density

Langmuir probe interpretation needs to be improved

ONERA

a think a standard in

Numerical simulations (SPIS)

- Numerical results
 - Electron density and potential : Boltzmann distribution $N_e \propto N_0 \exp((V-V_0)/k_BT)$
 - Quasi neutral plasma
 - Tank and plasma potentials : $\Delta V \sim 0,5 1 V$

Conclusion

Preliminary results

- Encouraging description of the plasma dynamics with a coarse mesh grid
- Future works
 - Exp: Finer interpretation of Langmuir probe measurements
 - Num: Finer mesh grid
 Neutral dynamics → prediction of pressure (later, DSMC required)

The final model will help to simulate the experiments to be conducted in the ONERA tank